20世纪60年代,随着激光和光纤的发明,光子学应运而生。智能手机就是光子学重要性的经典例证:人们利用激光制造手机外壳;利用光刻技术制造微电子电路......伴随着现代微纳米加工技术的不断发展,科学家拥有了在纳米尺度上操纵光子的前所未有的能力,衍生出了纳米光子学这一交叉学科。纳米光子学主要研究在纳米尺度上光与物质的相互作用,并在纳米尺度对光的散射、透射、吸收、折射、量子态等进行调控。 纳米尺度通常定义为1~100纳米,1纳米是十亿分之一米。在光子学领域,正在研究的光波长尺度大约是百纳米到1微米(1000纳米)。在小于光波长的尺度上开展光与物质相互作用的研究并了解其背后的物理机制非常重要。 纳米光学是纳米科学和纳米技术的新方向,它使用的光限定在空间尺寸a《lambda(lambda为波长)或体积V《lambda^3内。它应用激光与原子、分子、团簇和纳米结构的线性或非线性、经典或量子相互作用的新的或改型的已知效应。这一领域的实际发展以激光和可见光局限在极小尺寸的亚微米结构(纳米孔、纳米缝、纳米针等)的纳米技术为基础。 近年来,纳米发光材料的科学研究和技术应用越来越受重视。纳米发光材料兴起于量子点。量子点是一种无机纳米材料,它的发光颜色可简单地通过改变其尺寸而进行调控。量子点越大,发光颜色越红移。但量子点毒性大、种类有限,常需用紫外光激发。随着纳米技术的发展,上转换点登场。用长波(如近红外光)激发,上转换点可在短波处发光,如此可避免紫外光激发所产生的生物毒性。但上转换点多为稀土金属材料,稀少而昂贵。 与无机材料相比较,有机纳米发光材料具有种类多、加工易、毒性小等优势。聚合物点(polymerdots)就是一种有机纳米发光材料。塑料就是一种聚合物,如果塑料可以发光,人们将不会再为手机显示屏摔破而心痛。 但聚合物点和其它有机发光材料一样,常呈现聚集导致发光淬灭效应,即在单分子态发光,在聚集态发光减弱甚至不发光。本世纪初,我国科学家发现了一种与聚集导致发光淬灭完全相反的光物理体系:分子在希溶液中几乎不发光,而在聚集状闪闪发光。因发光由聚集而引起,这种发光过程被称为聚集诱导发光(简称“AIE”)。AIE纳米粒子简称为AIE点,具有很多显著优势,如种类多、可设计性强、加工性能好、生物相容性高、可用于大面积柔性显示屏制备等。 |
|手机版|搜索|焦点光学|光电工程师社区
( 鄂ICP备17021725号-1 鄂网安备42011102000821号 )
Copyright 2015 光电工程师社区 版权所有 All Rights Reserved.
申明:本站为非盈利性公益个人网站,已关闭注册功能,本站所有内容均为网络收集整理,不代表本站立场。如您对某些内容有质疑或不快,请及时联系我们处理!
© 2001-2022 光电工程师社区 网站备案号:鄂ICP备17021725号 网站公安备案号:鄂42011102000821号 Powered by Discuz! X3.2
GMT+8, 2025-7-27 13:19